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Abstract Segregating quantitative trait loci can be de-
tected via linkage to genetic markers. By selectively
genotyping individuals with extreme phenotypes
for the quantitative trait, the power per individual
genotyped is increased at the expense of the power per
individual phenotyped, but linear-model estimates of
the quantitative-locus effect will be biased. The proper-
ties of single- and multiple-trait maximum-likelihood
estimates of quantitative-loci parameters derived from
selectively genotyped samples were investigated using
Monte-Carlo simulations of backcross populations. All
individuals with trait records were included in the ana-
lyses. All quantitative-locus parameters and the resid-
ual correlation were unbiasedly estimated by multiple-
trait maximum-likelihood methodology. With single-
trait maximum-likelihood, unbiased estimates for
quantitative-locus effect and location, and the residual
variance, were obtained for the trait under selection,
but biased estimates were derived for a correlated trait
that was analyzed separately. When an effect of the
QTL was simulated only on the trait under selection,
a ‘‘ghost’’ effect was also found for the correlated trait.
Furthermore, if an effect was simulated only for the
correlated trait, then the statistical power was less than
that obtained with a random sample of equal size. With
multiple-trait analyses, the power of quantitative-trait
locus detection was always greater with selective
genotyping.
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Introduction

Many studies have shown that the effects of individual
quantitative trait loci (QTLs) can be isolated and esti-
mated with aid of linked genetic markers if there is
linkage disequilibrium between the genetic markers
and the QTLs (Payne 1918; Sax 1923) (reviewed by
Soller 1990, 1991, 1994; Korol et al. 1994). Numerous
experimental designs have been proposed to generate
linkage disequilibrium (reviewed by Weller 1992, 1996).
Genotyping for genetic markers is often much more
expensive than obtaining data on the quantitative traits
of interest, particularly if existing data banks are ana-
lyzed. This is generally the case for humans and large
animals (Weller et al. 1990). Therefore, several methods
have been proposed to increase the statistical power to
detect a segregating QTL per individual genotyped at
the expense of the power per individual phenotyped for
the quantitative trait. These methods include replicate
progeny, selective genotyping, sequential sampling, and
sample pooling (Lebowitz et al. 1987; Lander and
Botstein 1989; Darvasi and Soller 1992, 1994; Motro
and Soller 1993; Plotsky et al. 1993). Some of these
methods, such as replicate progeny, are independent of
the number of traits analyzed, but most are trait-depen-
dent. Thus, their effectiveness decreases as the number
of traits analyzed increases.

Selective genotyping (SG), first proposed by
Lebowitz et al. (1987), exploits the fact that most of the
information for QTL effects is in the ‘‘tails’’ of the
quantitative trait distribution. They therefore sugges-
ted to first score individuals for the quantitative trait,
and then select individuals with extreme values for
marker genotyping. SG can increase the statistical
power per genotype five-fold as compared to random



genotyping, provided that the number of individuals
phenotyped is increased nearly four-fold (Darvasi and
Soller 1992). Even if the cost of obtaining trait records
is minor with respect to genotyping costs, SG still has
significant drawbacks. The estimate of the QTL effect
derived from a linear-model analysis will be biased.
Darvasi and Soller (1992) derived a formula to obtain
an unbiased estimate of the QTL effect, provided that
SG is applied to both tails of the distribution. However,
this will usually not be the case.

Generally, populations with linked QTLs are the
most challenging for analysis. Recently, Lin and
Ritland (1996) evaluated the bias in estimating the
recombination frequency between linked QTLs based
on an analysis of recombination frequency after SG as
compared to the recombination frequency before SG.
They found that SG can bias estimates of the recombi-
nation frequency between linked QTLs—upward when
the QTLs are in repulsion phase, and downward when
the QTLs are in coupling phase. The bias increased
with an increase in the QTL effects.

Nearly all analyses of QTL effects have been based
on single-trait analyses, even if multiple traits were
analyzed (e.g. Weller et al. 1988; Georges et al. 1995). If
multiple correlated traits are analyzed by single-trait
analyses, and effects are associated with the same
markers on more than a single trait, it cannot be
determined whether the effect is due to two different
QTLs or to pleiotropic effects of a single locus. Fur-
thermore, the calculation of an experiment-wise type-I
error is not straightforward. Weller et al. (1996) sugges-
ted that these problems could be solved by a canonical
transformation of the quantitative traits; the QTL anal-
ysis is then performed on the set of uncorrelated ca-
nonical variables. Although this method can be readily
applied to any number of correlated traits, it has sev-
eral significant disadvantages (Weller et al. 1996). Ap-
plication of a canonical transformation with respect to
the phenotypic data does not guarantee the indepen-
dence of the canonical variables within the QTL
groups. This will restrict the application of this ap-
proach to SG. Furthermore, the effects of SG for
a single trait on QTL-parameter estimates for other
correlated traits has not been studied.

As first demonstrated by Weller (1986 a), maximum-
likelihood (ML) methodology can be used to derive an
unbiased estimate of the QTL effect and the recombi-
nation frequency between the QTL and the genetic
marker. Surprisingly, for single-trait analyses, ML is
not noticeably more powerful than linear-model ana-
lyses, whether single- or multiple-linked markers are
employed (Simpson 1989, 1992; Haley and Knott 1992;
Darvasi et al. 1993). However, Korol et al. (1995)
showed that the power to detect a QTL with an ML
bi-variate analysis of two correlated traits can be
greater than the power obtained with two single-trait
analyses, depending on the residual trait correlations
and the correlations between the QTL effects (see also

Korol et al. 1987, 1994, 1996; Preygel and Korol 1989;
Jiang and Zeng 1995; Ronin et al. 1995).

Using ML, and considering all individuals with trait
records even if they are not genotyped, it should be
possible to obtain asymptotically unbiased (i.e. consis-
tent) estimates of QTL effects with SG (Lander and
Botstein 1989). Interval-mapping results from ML ana-
lyses of SG populations when more than one QTL
controls the target trait have not been previously pre-
sented. Furthermore, it is not clear how a single-trait
ML will perform if individuals are selected for genotyp-
ing based on a single trait, but are analyzed for other,
correlated, traits.

It has been previously demonstrated that the power
of QTL detection is increased if the QTL also has an
effect on the residual variance, provided that the analy-
sis model is appropriate (Korol et al. 1996). Similarly,
an effect of the QTL on the residual covariance in
a two-trait analysis also increases the detection power,
if included into the model (Korol et al. 1995; Ronin
et al. 1995). Weller and Wyler (1992) have shown that
SG may be an efficient strategy to detect a QTL with
a variance effect if some of the individuals with trait
values close to the mean are also genotyped. Therefore,
it should be of interest to evaluate the efficiency of two-
trait analysis combined with SG when the QTL affects
both the trait means and variances.

The objectives of the present study were to answer
these questions for single- and multi-trait ML based on
Monte-Carlo simulations of backcross populations be-
tween inbred lines within the framework of standard
interval mapping.

Materials and methods

Mixture-model two-trait interval analysis
for selective genotyping design

Two-trait interval analysis for SG backcross populations was per-
formed as described by Korol et al. (1995), with the likelihood
function modified to include phenotypic data on individuals that
were not genotyped
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presence of a segregating QTL was tested by a likelihood-ratio test.
If the null hypothesis of no segregating QTL is correct, then the
likelihood ratio, LR, is:
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several QTL detection studies have noted that the empirical distri-
bution of LR is not identical to the theoretical distribution (Jansen
1994). Therefore, for each model the empirical distribution of the test
statistic under the null hypothesis was estimated by running 2000
simulations. Significance was then determined based on the empiri-
cal 5 and 1% critical values. Note that the likelihood function ¸ (#n

1
)

includes terms calculated over both genotyped individuals (equation
2) and non-genotyped individuals (equation 2@ ).

For the analysis of two linked QTLs and two unlinked QTLs, the
mixture model was modified to take account of the joint segregation
of the QTLs as described in Korol et al. (1998). The individuals that
were not genotyped were included in the likelihood function as
a mixture of four densities, instead of the two that are shown in (2@).
The mixture proportions depend on the unknown distance between
the putative QTLs. These proportions are 0.25 for unlinked QTLs.

Generation of data and analysis

For each combination of parameters, 200 backcross populations of
2000 individuals were simulated using pseudo-random numbers.
Bivariate normal distributions with unit variances were generated
for the two QTL genotypes, with substitution effects varied from
zero to one. QTL genotypes were then determined by binomial
sampling based on Equation (2). With SG, unless noted otherwise,
the 200 individuals with the highest and 200 individuals with the
lowest phenotypic values were genotyped for seven markers spaced
at 24-cM intervals along the chromosome. The primary QTL was
assumed to be located at position 60 cM on a chromosome of length

144 cM. Thus, the QTL was at the midpoint of the third marker
interval. Marker genotypes were determined based on sampling
from a binomial distribution, with an assumed recombination fre-
quency 0.19 between adjacent markers (according to the Haldane
mapping function for 24-cM intervals). With random genotyping
(RG) 400 individuals were randomly selected for genotyping. For
simulations with two linked QTLs the second QTL was simulated at
position 84 cM in the middle of the fourth interval. Both coupling
and repulsion phases relative to the QTL trait effects were simulated.
For simulations with two unlinked QTLs the second QTL was
simulated at position 84 cM on a second chromosome also of length
144 cM. Seven markers with equal spacing were also genotyped for
the second chromosome. The two QTLs simulations were analyzed
with both single- and two-QTL models. The same data sets were
analyzed by single- and multiple-trait analysis methods. For the
single-QTL model, the power of detection of QTL

1
was estimated as

the frequency of rejection of H
0

(no linked segregating QTL) based
on the empirical 5 and 1% critical value of the test statistics.
Similarly, the power of detection of two QTLs vs one QTL (testing
H

2
vs H

1
for the two-QTL model) was determined as the frequency

of rejection of H
1

as described in Korol et al. (1998).

Obtaining numerical solutions

Optimization was by the modified-gradient and Newton methods.
The possibility of multiple maxima was tested by optimizing a few
test cases using various sets of starting values. In all cases only
a single maximum was found within the parameter space. Therefore,
for all other data sets the simulated parameters were used as initial
values.

Results

From the schematic plot presented in Fig. 1, it appears
that the parameter estimates for the correlated trait will
be biased. In the absence of any effect of QTL Q/q on
the trait y (dy"0), SG for trait x may generate a
‘‘ghost’’ effect on trait y, due to the residual correlation
between x and y. A similar effect is noted if marker
information from the selected individuals is used to
construct the map of the markers; direct application of
this design leads to the revealing of spurious linkages
(Martinez 1996). Furthermore, it is not known how SG
for one trait will affect the power to detect QTLs
affecting other correlated traits.

Single-trait analysis with two QTLs

ºnlinked Q¹¸s

The simulated data were fitted by two models: (1) a
single QTL on the chromosome of interest; thus the
second unlinked QTL, which had a larger effect, was
ignored; (2) a two-QTL model. For comparison we also
simulated and analyzed the situation with a single
QTL. The results from SG and randomly genotyped
samples are presented in Table 1. It can be concluded
that:
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Table 1 Increased detection
power and robustness to the
presence of additional unlinked
QTLs of selected genotyping
design, using the single-interval
mapping model for a single trait
affected by two unlinked QTLs.
Mean parameter estimates and
the power from 200
Monte-Carlo runs are
presented; standard errors
among runs are given below the
means in parentheses. Note that
in both models, (1) and (2), the
bias and accuracy of the
estimation of the target QTL
(QTL

1
) position in SG design

are not much affected by the
unlinked QTL, indicating the
robustness of ML mapping
analysis with SG. However, the
two-QTL model results in
a reduced bias for the estimates
of p and a, as well as a narrower
confidence interval in the target
QTL location

a*
2

¸
1

¸
2

a
1

a
2

p Power%

aP5% 1%

(1) Fitting a single-QTL model for the ‘target’ QTL (QTL
1
)

0 SG 60.76 0.257 0.998 92 82
(1.00) (0.004) (0.001)

RG 64.33 0.263 0.996 42 24
(2.15) (0.010) (0.001)

0.25 SG 59.70 0.257 1.008 90 79
(1.11) (0.005) (0.001)

RG 65.83 0.278 1.005 45 27
(1.97) (0.009) (0.001)

1.00 SG 60.74 0.266 1.117 88 72
(1.39) (0.005) (0.001)

RG 68.15 0.281 1.113 35 17
(2.23) (0.011) (0.001)

(2) Fitting a two-QTL model
0.25 SG 59.25 83.02 0.256 0.252 0.999 91 79

(0.99) (1.00) (0.005) (0.004) (0.001)
RG 57.46 86.54 0.281 0.266 0.999 44 27

(1.90) (1.70) (0.008) (0.010) (0.001)
1.00 SG 60.14 84.03 0.256 1.004 0.998 88 70

(1.10) (0.12) (0.005) (0.005) (0.001)
RG 58.07 83.84 0.264 1.004 0.995 41 25

(1.90) (0.28) (0.010) (0.007) (0.002)

Fig. 1 The effect of selective genotyping in a backcross design when
a QTL affects the selected trait x (i) or the correlated trait y (ii).
Projections of the joint (two-dimensional) density function f (x, y) of
the traits x and y on the x!y plane are denoted by elipses for the
alternative QTL groups, qq and Qq. The selected samples at this
density are shaded by vertical lines for qq individuals and by horizon-
tal lines for Qq individuals. In i, selection for x induces a ‘‘ghost’’
effect for y. Although the true marginal densities f

Qq
(y) and f

qq
(y)

have the same mean values, the densities f 4
Qq

(y) and f 4
qq

(y) resulting
from selection of the tails are shifted relative to each other, with
a distance a4

y

(1) despite the presence of an unlinked QTL (QTL2 )
not included in the model, the power of detection of
QTL1 and the accuracy of the parameter estimates are
increased with SG as compared to RG, even though the
effect of the unlinked QTL2 is several-fold greater than
that of the target QTL1 . The bias and accuracy of the
estimation of the QTL1 position are not much affected
by the unlinked QTL. Thus, SG is apparently robust

with respect to the presence of an additional unlinked
QTL. The improvement in the power of detection of
the target QTL using SG as compared to random
genotyping is the same, or even greater than for a single
QTL (Lander and Botstein 1989).
(2) these conclusions also hold when the model in-
cludes the co-segregating QTL2 (section b in Table 1).
The power of detection of two QTLs (QTL1 and
QTL2 , H2 hypothesis) versus one QTL (i.e., QTL2 ,
H1 hypothesis) is very close to the power of QTL1
detection using the single-QTL model. This indicates
the robustness of ML estimated with SG. The two-
QTL model results in a reduced bias for the estimates
of p and a, as well as a narrower confidence interval in
the target QTL location.

¸inked Q¹¸s

The results of two linked QTLs of equal effects, in
coupling (CP) and repulsion (RP) phases, residing in
adjacent intervals are presented in Table 2. As in the
case of non-linked QTLs, the power of detection for
linked QTLs is increased relative to random genotyp-
ing. For RP, SG increased the power of the ‘H2 vs H1 ’
test 3—4-fold as compared to RG, and for CP this
difference is even greater. In contrast to the results of
Lin and Ritland (1996), with ML estimation and in-
cluding all individuals with trait records, the direction
of the bias in the estimated distance between the QTLs
does not depend on the linkage phase. The bias of the
estimated distance between the two linked QTLs and
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Table 2 Increased detection power of a selected genotyping design
using a two-interval mapping model for a single trait affected by two
linked QTLs. Equal effects of the two QTLs were simulated
(a*

1
"a*

2
"0.5) for both repulsion (RP) and coupling (CP) phases.

The power of detection is given for the two QTL vs one QTL, that
was determined as the frequency of rejection of H

1
(a single segregat-

ing QTL) based on the empirical critical value of the test statistics as
described in Korol et al. (1998)

Design ¸
1

¸
2

a
1

a
2

p Power %

aP5% 1%

RP SG 54.91 88.77 0.473 !0.482 1.001 94 83
(1.02) (0.95) (0.022) (0.022) (0.002)

CP SG 53.73 88.41 0.492 0.512 0.999 77 52
(1.37) (1.15) (0.022) (0.022) (0.002)

RP RG 49.81 91.50 0.448 !0.446 0.997 32 17
(2.23) (2.02) (0.035) (0.033) (0.003)

CP RG 48.04 91.63 0.518 0.500 0.993 19 3
(2.12) (2.00) (0.033) (0.034) (0.003)

Fig. 2 Parameter estimates
resulting from interval analysis
with selective genotyping when
the trait is affected by two linked
QTLs as a function of the QTL
effects. (i) Bias in the estimated
distance between the QTL; (ii)
standard deviation of the
estimated position. Open circles,
coupling phase; black squares,
repulsion phase. The size of the
mapping population was 4000
individuals

the SDL of the estimated distance is plotted as a func-
tion of the simulated QTL effects in Fig. 2. As in
Table 2, both simulated loci had equal effects. Al-
though the distance was always over-estimated, both
bias and the SD of the estimated distance decreased
with an increase in QTL effects. With SG the confi-
dence intervals for QTL locations were only half of
those for RG.

Two-trait analysis

(1) ax"0.25 and ay"0. Single-trait ML analysis of
populations simulated with a segregating QTL affect-
ing trait x but not y are presented in the upper part of
Table 3. Since selection was relative to trait x, ML
parameter estimates for this trait should be unbiased in
all cases. However, when a non-zero residual correla-
tion between the traits was simulated, biased results
were obtained for y. With R"0.5 the estimated effect
on y was about 80% of the effect on x. Even relatively
‘‘mild’’ SG resulted in significantly biased estimates for

the effect on y (data not shown). The statistical power
to detect an effect on y, which should have been equal
to the type-I error, was considerably greater with
a non-zero residual correlation, and increased as
a function of this correlation. Similar to the case de-
scribed by Martinez and Curnow (1992) a ghost QTL
effect is observed when an incorrect model is used for
QTL analysis.

The results for the multiple-trait analyses with selec-
tive and random genotyping are presented in the re-
mainder of Table 3. SG resulted in a considerably
greater power of detection for both the single- and
multiple-trait analyses. Even though selection was rela-
tive to x, and an effect was simulated only on this trait,
the power of detection with correlated traits was slight-
ly greater for the multi-trait analyses than for the
single-trait analyses of x. Furthermore, the power in-
creased with an increase in the residual correlation.
Similar results with random genotyping were found
previously by Korol et al. (1994, 1995, 1998) and Ronin
et al. (1995). The SDs of the estimated QTL location as
a function of R for both SG and random sampling are
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Table 3 Increased detection
power, and accuracy of
estimation of QTL position and
effect using interval two-trait
analysis under selective
genotyping as compared to
single-trait analysis and random
genotyping. A single QTL on the
genotyped chromosome affects
the trait under selection, but not
the correlated trait. Backcross
populations were simulated for
two traits, x and y. The simulated
QTL effects were a*

x
"0.25 and

a*
y
"0, residual standard

deviations were p
x
"p

y
"1,

and the residual correlation
between the traits was R*
(0, 0.5, and 0.7)

R* a
x

a
y

p
x

p
y

R ¸ Power %

aP5% 1%

Single-trait analysis, SG
0.257 0.998 60.76 92 82
(0.004) (0.001) (1.00)

0.0 0.006 0.995 80.65 8 1
(0.014) (0.001) (3.41)

0.5 0.206 0.992 68.18 35 18
(0.006) (0.001) (2.27)

0.7 0.208 0.992 66.14 55 28
(0.005) (0.001) (1.86)

Two-trait analysis, SG
0.0 0.254 !0.001 0.998 0.998 !0.002 61.20 87 77

(0.005) (0.009) (0.001) (0.001) (0.002) (1.12)
0.5 0.254 !0.005 0.998 0.997 0.499 60.87 91 80

(0.005) (0.008) (0.001) (0.001) (0.001) (1.05)
0.7 0.255 0.006 0.998 0.997 0.699 59.90 93 86

(0.004) (0.007) (0.001) (0.001) (0.001) (0.86)

Two-trait analysis, RG
0.0 0.253 !0.001 0.996 0.997 !0.001 64.01 33 10

(0.010) (0.010) (0.001) (0.001) (0.002) (2.41)
0.5 0.273 0.003 0.996 0.996 0.498 64.67 46 25

(0.010) (0.010) (0.001) (0.001) (0.001) (2.11)
0.7 0.255 0.004 0.996 0.996 0.699 63.67 64 40

(0.010) (0.009) (0.001) (0.001) (0.001) (1.78)

Fig. 3 Standard deviation of the estimated position of the mapped
QTLs with selective and random genotyping for single- and two-
trait analysis as a function of the residual correlation between the
traits. (i) The marked chromosome affects the selected trait, and
(ii) the marked chromosome affects the correlated trait. Open and
black squares denote two-trait analysis with selective and random
genotyping, respectively; the dotted line and open circles denote
results for the single-trait analyses of traits x and y, respectively,
under selective genotyping

plotted in Fig. 3. SDs were always less for SG. SDs were
less for multi-trait as compared to single-trait analyses,
except for an effect simulated on y and a correlation of
zero. However, for this case the single- and multi-trait
analyses, with or without SG, should be equivalent.

The differences among the three alternatives plotted in
Fig. 3ii for R" 0 are not significant, and apparently
represent random variation.

The distribution of the maximum LOD values by
chromosomal intervals is given in Fig. 4. The correct
interval always has the highest frequency, but SG in-
creased the probability of correct determination. This
probability increases with an increase in the residual
correlation. As expected, the frequency of correct deter-
mination of the QTL location increases with sample
size (data not shown).
(2) ax"0 and ay"0.25. The results are given in
Table 4. In the single-trait analysis the power to reject
the null hypothesis of ax"0 was close to the expected
value of a. Figure 1 b indicates that with a non-zero
correlation, SG for x should reduce the power of detec-
tion, and bias downward the estimate of the QTL effect
on y. As the correlation increases from 0 to 0.7, the
statistical power of detection for a"0.05 and N"400
decreases from 41 to 24%. Similar trends were also
found for other selection levels (data not shown). As the
residual correlation increases, the estimate of QTL
location tends towards the center of the chromosome,
and the SE of the estimate increases.

The null hypothesis for the multivariate analysis is
no segregating QTL affecting either trait. With no
residual correlation, the power to detect the QTL effect
is similar to that obtained for the single-trait analysis
for all selection levels. However, the power to detect
a QTL increases with an increase in the residual cor-
relation. Estimates of all parameters were close to the
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Table 4 Increased detection
power, and accuracy of
estimation of QTL position and
effect using interval two-trait
analysis under selective
genotyping as compared to
single-trait analysis. A single
QTL on the marked
chromosome affects the
correlated trait, but not the trait
under selection. The simulated
effects of the QTL were a*

x
"0

and a*
y
"0.25

R* a
x

a
y

p
x

p
y

R ¸ Power %

aP5% 1%

Single-trait analysis
0.007 0.997 69.28 5 1
(0.007) (0.001) (3.37)

0.0 0.273 0.997 61.63 41 18
(0.008) (0.001) (1.99)

0.5 0.184 1.001 66.06 26 14
(0.007) (0.001) (2.32)

0.7 0.142 1.003 68.52 24 12
(0.007) (0.001) (2.60)

Two trait analysis
0.0 0.006 0.257 0.998 0.997 !0.002 63.26 32 16

(0.006) (0.009) (0.001) (0.001) (0.002) (2.21)
0.5 0.007 0.261 0.998 0.997 0.499 63.08 43 21

(0.005) (0.007) (0.001) (0.001) (0.001) (1.94)
0.7 0.006 0.255 0.998 0.997 0.699 61.14 64 37

(0.005) (0.006) (0.001) (0.001) (0.001) (1.60)

Fig. 4 The frequency of the distribution of the maximum LOD score
by chromosomal intervals as a function of the residual correlation
based on two-trait interval analysis. The QTL with simulated effect
a*
x
"0.25 and a*

y
"0 was located in the middle of interval 3, at

¸"60 cM. ¸ight and shaded columns denote frequencies for selec-
tive and random genotyping, respectively

simulated values. The QTL location was generally bi-
ased (Hyne et al. 1995) towards the center of the chro-
mosome. As the residual variance and the sample size
increased, this bias decreased.
(3) More than one QTL. Similar results were obtained
with two unlinked QTLs. In the example presented
(Table 5), both QTLs only affect trait x, a*x

1
"a*x

2
"

0.25 and a*y
1
"a*y

2
"0, with a residual correlation

R*xy"0.5 and residual SDs px"py"1. In the single-
trait analyses, estimates of the effects of both loci were

close to the simulated values for x, but biased for y. The
estimates of ay

1
and ay

2
were more than 70% of the

effects simulated for trait x. By contrast, two-trait anal-
ysis results in unbiased estimates of the parameters.
(4) SG with a QTL variance effect. The results are
presented in Table 6 for a QTL with mean and variance
effects on trait x, and no effects on trait y. Residual
correlations of 0 and 0.7 were simulated. The power of
QTL detection was estimated as the frequency of rejec-
tion of H0 (no segregating QTL on the chromosome
genotyped) based on an asymptotic approximation of
the test statistics (Wilks 1962). Similarly, the power of
detection of the variance effect was determined from
the likelihood ratio of unequal and equal variance-
parameter estimates. A variance effect of only 15%
dramatically increased the power of the QTL detection.
Furthermore, the SEs of the estimated QTL chromo-
somal position were reduced by half. Previous results
with random genotyping indicate that analysis with
a model which assumes no QTL variance effect, when
the QTL does in fact affect the variance, reduces the
power of QTL detection (Korol et al. 1996). However,
in the present analysis with SG, the power obtained
assuming equal genotype variance was nearly the same
whether or not a variance effect was simulated. These
results demonstrate that if the variance effect is small,
the reduction in power may be negligible. Thus the
two-trait SG analysis appears to be robust with respect
to inaccuracies in the analysis model.

Discussion

Lin and Ritland (1996) found that SG can bias the
proportion of recombinant genotypes for linked QTLs,
with the bias increasing with the QTL effects. The
simulation results presented in Tables 1 and 2 for
interval ML analysis demonstrate that, with either
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Table 5 Unbiased parameter
estimation in two-trait interval
analysis combined with selective
genotyping. Two QTLs on
different chromosomes affect the
trait under selection (x), but not
the correlated trait (y). Note, that
single-trait analysis results in
highly biased estimates of both
QTL effects on trait y, whereas
two-trait analysis gives unbiased
estimates

ax
1

ax
2

p
x

ay
1

ay
2

p
y

R
xy

¸
1

¸
2

Single-trait analysis
0.256 0.252 0.999 59.25 83.02
(0.005) (0.004) (0.001) (0.99) (1.00)

0.193 0.182 0.988 50.48 91.84
(0.010) (0.012) (0.002) (2.96) (2.45)

Two-trait analysis
0.252 0.245 1.001 0.001 0.005 0.996 0.502 59.53 83.07
(0.006) (0.007) (0.002) (0.012) (0.012) (0.002) (0.002) (1.15) (1.12)

Table 6 Increased detection
power and accuracy of estimation
of QTL position due to an
accounted for variance effect.
A single QTL on the genotyped
chromosome affects the mean
and variance of the selected trait
x, but has no effects on the
correlated trait y. The simulated
QTL effect on mean value and
variance where a*

x
"0.25 and

d
x
"px

1
/px

2
"1.15. The power of

detection of the variance effect
was determined from the
likelihood ratio of unequal and
equal variance parameter
estimates, and is denoted by an
asterisk. Note a remarkable
reduction in the standard errors
of the estimated map position of
the QTL

R* a
x

a
y

d
x

p
y

R ¸ Power %
sa

x
sa

y
sd

x
sp

y
s
R

s
L aP1% 0.1%

Simulated: d
x
"px

1
/px

2
"1, model: d

x
"1

0 0.254 0.009 0.996 !0.003 58.26 62 33
(0.006) (0.014) (0.001) (0.002) (1.64)

0.7 0.259 0.016 0.997) 0.699 57.97 72 43
(0.005) (0.010) (0.001) (0.001) (1.35)

Simulated: d
x
"px

1
/px

2
"1.15, model: d

x
"1

0 0.246 0.015 0.996 !0.003 58.8 68 33
(0.006) (0.012) (0.001) (0.002) (1.60)

0.7 0.243 0.018 0.996 0.697 57.5 74 44
(0.006) (0.011) (0.001) (0.001) (1.56)

Simulated: d
x
"px

1
/px

2
"1.15, model: d

x
O1

0 0.251 0.008 1.154 0.997 !0.003 59.6 97 84
(0.006) (0.012) (0.004) (0.001) (0.002) (0.86) 95* 86*

0.7 0.252 0.007 1.157 0.997 0.700 60.4 99 94
(0.006) (0.009) (0.003) (0.001) (0.001) (0.80) 98* 93*

linked or unlinked QTLs, SG always outperforms RG.
SG results in greater detection power, a lower bias and
a higher accuracy for the parameter estimates, includ-
ing both QTL locations and effects.

Henderson (1975) investigated the effect of selection
in dairy cattle on sire evaluation using Best Linear
Unbiased Methodology, and concluded that sire evalu-
ation will be unbiased if: (1) variances and covariances
were known, (2) selection occurred within fixed effects,
and (3) all records on which selection were based were
included in the analysis. Thus, if cows are selected
based on first-parity production records, but later-par-
ity records, which are a selected sample, are included in
the analysis, then unbiased genetic evaluations are de-
rived, if all first-parity records are included (Weller
1986b). Similarly, in the current study, unbiased para-
meter estimates were derived only if all records for the
trait under selection were included in the analysis.
Furthermore, the power of QTL detection, and the
estimation accuracy of the QTL substitution effects,
residual variances, residual correlations, and the chro-
mosomal position of the QTL are increased by SG for
a ML multi-trait analysis. With single-trait ML analy-
sis ‘‘ghost’’ QTL effects may be detected, the power of

QTL detection is reduced, and estimates of the substi-
tution effects and chromosomal location are biased.
Contrary to the single-trait analyses, detection power
and the accuracy of parameter estimates increase with
an increase in the residual correlation. All parameters
were accurately estimated in the multi-variate analyses,
except for QTL location with a simulated effect on y.
However, even for this parameter, the bias and variance
of the estimated location decrease with increased resid-
ual correlation and sample size.

Experiments for the detection of QTL with the aid of
genetic markers consist of four elements: generation of
the population for analysis, scoring individuals for
quantitative traits, genotyping for genetic markers, and
data analysis. The cost of data analysis will generally be
insignificant. Scoring additional traits will usually be
independent of both generating the population and
genotyping. Unless the objective of the analysis is
a single well-defined trait, then it will generally be cost
effective to measure additional traits. Even if the objec-
tive is to detect QTLs for a single characteristic, it will
often be useful to score related traits that may yield
additional information about the trait of interest
(Korol et al. 1987, 1994, 1995, 1996; Ronin et al. 1995;
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Jiang and Zeng 1995). For example, with resistance to
a specific disease, there will be more than one symptom
that can be scored, and these variables will be only
partially correlated. Thus, the question of the effect of
SG on correlated traits will nearly always be relevant if
SG is employed, unless SG is applied to a set of canoni-
cal variables, which are uncorrelated by definition, as
suggested by Weller et al. (1996). In view of the results
presented, there seems to be little justification for this
procedure, unless many traits are considered. An alter-
native strategy may be an iterative procedure in which
each interval is analyzed with a correction for pre-
viously fitted QTLs.

Although SG with a multi-trait ML analysis does
not decrease the power per individual genotyped in any
of the cases considered, the optimum sampling strategy
for several correlated traits cannot be derived from the
results presented. Further study of this question is
suggested. In addition to the covariance matrix among
the traits, trait-scoring costs, the relative importance of
the traits, and heritability should also be considered.
Possibly, methods of linear programming could be
applied to optimize the sampling strategy.
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